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Abstract

This paper describes a method to determine molecular displacements as a function of time in just two scans: one reference scan

using the Carr–Purcell–Meiboom–Gill (CPMG) sequence, a second scan using a modified CPMG sequence (KCPMG). Measure-

ments on free diffusion in bulk fluids, and on restricted diffusion in porous rock samples are reported. This technique can also be

used for rapid measurement of flow and chemical exchange.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Measurement of the diffusion constant can assist the

characterization of molecules and fluids. The time-de-

pendent diffusion constant can be used to characterize

pore geometry, such as surface-to-volume ratio and

tortuosity [1,2] and it has been used to study rocks by

applying pulsed or static field gradients [3–5]. In these
NMR experiments using spin echo and stimulated echo,

for example, one diffusion time (D) will be preset in the
pulse sequence to determine the molecular displacement

over D, thus obtaining DðDÞ. Then, a series of mea-

surements are made with different Ds to acquire the full
curve of the time-dependent diffusion constant. Mea-

surements of diffusion using Carr–Purcell–Meiboom–

Gill (CPMG) sequence alone [6,7] would result in D
comparable to the time between the p=2 and the first p
pulses [8–11].

This paper describes an alternative experimental

scheme to determine the molecular displacement at

many values of D in one or a few scans of a modified

CPMG sequence, called KCPMG. The key to our

modification of CPMG is the creation of a spatially

modulated magnetization at the beginning portion of
the sequence and then to use the CPMG p pulse train to

monitor the evolution of the modulation. In contrast,

the initial magnetization in CPMG is uniform. In the

case of spatial diffusion, the amplitude of the magneti-

zation modulation is governed by the diffusion dynam-

ics. We demonstrate that our scheme measures directly

the time dependent diffusion. We present the concept of

KCPMG and several implementations with different

spatial modulations of the magnetization.
The KCPMG concept is closely related to the early

work of Packer [12] in an effort to monitor the flow of

fluids, using a rather weak field gradient. We will show

that the presence of a strong magnetic field gradient

changes the behavior of the echo formation that in-

cludes contributions from many coherence pathways. In

fact, such large field inhomogeneities lead to a consistent

echo shape that facilitates the determination of diffusion
properties.

2. KCPMG methodology

2.1. CPMG and coherence pathways

The conventional CPMG sequence begins with a p=2
radio-frequency (RF) pulse, a waiting period Tcp, fol-
lowed by a train of p pulses separated in time by 2Tcp.
This is commonly described by

p
2
� Tcp � p

�
� 2Tcp

�
N
: ð1Þ
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The brackets denote the repeating unit and N is the total
number of echoes. The acquisition of echoes is made

between the adjacent pairs of p pulses. We consider the
application of a constant field gradient (G) during the
CPMG and all other pulse sequences discussed in this

paper. It has been shown recently that in a strong field

gradient, the delay after the initial p=2 pulse (of length
tp=2) should be reduced to T 0

cp ¼ Tcp � 2tp=2=p in order to
compensate for the precession during the p=2 pulse [13],

p
2
� T 0

cp � p
�

� 2Tcp
�
n
: ð2Þ

It is beneficial to discuss the CPMG-related sequences in

terms of coherence pathways [14], in particular, for ex-

periments in strong field gradients when the signal

bandwidth is limited by the power of RF pulses. In this

case, the nutation angle and the orientation of the ro-

tation axis of a pulse depend on the offset between the

frequency of the spin�s Larmor precession and the RF
irradiation [15,16]. As a result, many trajectories of the

magnetization evolution contribute to the echo signals

[17–21]. Goelman and Prammer [17] have partitioned

these coherence pathways into direct echo and indirect

echoes using a subset of the pathways that are most

important. H€uurlimann [21] has recently presented a

thorough analysis of all coherence pathways and the

diffusion effects. We will briefly introduce the basic no-
tation of coherence pathways for CPMG here and will

further discuss the coherence pathways of KCPMG in

Appendix A.

We follow the notations used in [21] to mark the

magnetization states by q which can be 0, +1, or )1, (or
0, +, and )), corresponding to z-, clockwise or counter-
clockwise precessing magnetizations. The RF pulses

rotate the magnetization vector and thus change q. A
coherence pathway is characterized by a series of num-

bers, QN � ðq0; q1; . . . ; qN Þ, where q0 is the coherence
before the first p pulse and N is the echo number. We

will follow [11] to highlight two types of coherences, the

direct spin echo (SE) and the stimulated echo (STE). The

direct spin echo is characterized by a series of qs that
alternate between þ and �. The stimulated echoes, on
the other hand, have a few qs being zero corresponding
to magnetization along the z-axis. For the CPMG se-

quence, the echoes for these two types of pathways form

midway between two adjacent p pulses. However, in

KCPMG, the echoes form at different times.

The contribution of a coherence pathway to the N th
echo can be written as a product of two factors, MQN ¼
AQ � SQ. AQ is a factor determined by the RF pulses. For

a given coherence pathway, it can be identical for
KCPMG and CPMG. SQ describes the decay factor due
to diffusion for a coherence pathway and is independent

of the frequency offset. SQ for KCPMG is different from

that for CPMG. As a result, KCPMG is sensitive to

diffusion over long diffusion times.

2.2. KCPMG pulse sequence

The concept of KCPMG can be implemented in

several different ways. The simplest form consists of a

CPMG sequence with an extra delay Tm inserted be-

tween the first p=2 and p pulses:
p
2
� Tm � T 0

cp � p
�

� 2Tcp
�
n
: ð3Þ

Tm can be positive or negative and jTmj ¼ d < Tcp. For
positive Tm, the duration between the p=2 and the first p
pulse is T 0

cp þ d, and for negative Tm, it is T 0
cp � d. CPMG

sequence corresponds to Tm ¼ 0. We assume here that a

constant magnetic field gradient G is applied. The same

RF sequence was considered by Packer [12] with a weak

gradient, i.e., cGLtp < 1, where L is the sample length

along the gradient direction. In this case, the RF pulses

can excite the entire sample and the nutation angle of

the p pulse is close to 180� for the entire sample. Thus,
the magnetization is being well refocused by the p pulses
for the early echoes and these echo signals are domi-

nated by one main coherence pathway (direct echo).

This can also be done by including gradient pulses be-

tween the RF pulses, for example. However, for the later

echoes, effects from minute errors of the pulses and RF

field inhomogeneity will become significant so that other

coherence pathways may not be neglected. As a result,
the echo amplitude and shape will change and likely

oscillate. In this work, we consider the presence of a

strong field gradient, cGLtp > 1. This changes the spin

dynamics by allowing many more coherence pathways

to contribute appreciably. We will show that this con-

dition produces consistent echo shapes which is helpful

for a simple interpretation of the echo signal.

Phase cycling was used to select only coherence
pathways that produce transverse magnetization after

the first p=2 pulse. For the pulse sequences in Eqs. (1)
and (3), the phase of the first p=2 pulse was alternated
between 0� and 180�. The p pulses were at 90� phase.
The data from the two phase settings are subtracted

from each other. In addition, a four-phase CYCLOP

scheme can be applied to further remove systematic

errors. We will first examine this simple implementa-
tion of KCPMG in some details before discussing other

implementations.

A similar RF sequence coupled with pulsed field

gradients has also been reported [22] with a goal of

producing multiple echoes and accelerating imaging

experiments.

2.3. Echo shapes

The peaks of KCPMG echoes form at times shifted

by þd (late echoes) or �d (early echoes) relative to the
corresponding positions of the CPMG echoes (d ¼ jTmj).
The shapes of several echoes obtained with the CPMG
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Eq. (2) and KCPMG Eq. (3) sequences are compared in
Fig. 1. Panels (a) and (b) show the KCPMG echoes with

Tm ¼ �0:9 and +0.9 ms, and d ¼ 0:9 ms. Panel (c) shows
the shape of the CPMG echoes from the first Hahn echo

to the later ones with the asymptotic echo shape in a

constant field gradient. It is typical for the CPMG as-

ymptotic echo to develop small negative amplitudes at

the edges of the echo [21]. The first echo occurs at a time

Tcp � d after the p pulse and has the shape of the Hahn
echo since the direct echo is the only possible coherence

pathway. The second detection period displayed below

shows two echoes appearing at times Tcp þ d and Tcp � d
after the second p pulse. The two echoes have different
shapes because they are formed by different coherence

pathways, with the early one being a stimulated echo

(Q ¼ þ0�) and the late one being a direct echo

(Q ¼ �þ�). For echoes in the later periods after many
p pulses, both direct and stimulated echo-like coherence
pathways contribute giving rise to their unique, as-

ymptotic shapes. The echoes at times Tcp þ Tm are con-
tributed by the coherence pathways starting with

q0 ¼ �1, while the echoes at times Tcp � Tm are con-
tributed by those starting with q0 ¼ þ1. For CPMG,
i.e., Tm ¼ 0, the signals from these different coherence

pathways overlap midway between two p pulses. The

non-zero Tm in KCPMG allows the separate observation

of these different coherence pathways directly. For the

second echo, this technique has also been used by

B~aalibanu et al. [20] to separate the two contributions.
The KCPMG sequence [Eq. (3)] with positive Tm

produces a similar echo evolution as discussed above for

negative Tm, but with the early and late echoes reversed,
Fig. 1b.

The addition of the data from sequences with Tm and
�Tm (Fig. 1d) cancels much of the secondary features of
the echoes and makes the shapes of the KCPMG echo

much more similar to those of the CPMG echoes. In this

symmetrized form, the same coherence pathways con-
tribute to both the early and late KCPMG echoes and

these pathways are identical to those of the corre-

sponding CPMG echoes. Thus, this is the preferred

scheme to execute the KCPMG.

Fig. 1. CPMG and KCPMG echoes vs the detection time starting after the p pulse, for tap water at d ¼ 0:9 ms. Tcp ¼ 1:1 ms. The data for each signal

is labelled by the echo number. The sample shape is a cylinder of 2 cm diameter and 4 cm length. The magnetic field is 410G corresponding to the

proton Larmor frequency of 1.7MHz. The applied magnetic field gradient is 13.2G/cm and the duration of the p=2 pulse is 12 ls. Only a slice of
about 5mm in the center of the sample was excited by the RF pulses. Experiments were performed using an Apollo spectrometer from Tecmag.
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2.4. Decay due to diffusion

The decay of signal of fluids during the CPMG in the

presence of field gradients is dominated by two sources.

The first is the intrinsic bulk spin–spin relaxation and

that due to interactions with the surfaces. The second

source is the Brownian motion of fluid molecules in the

presence of inhomogeneous magnetic fields. At the

middle of the adjacent p pulses, the accumulated phase
from Larmor precession is zero on average, however,

the phase dispersion due to diffusion renders some of the

spins out of phase leading to signal decay. Since the

average phase is zero, the final effect of diffusion is an

attenuation of the signal.

Although the KCPMG sequence [Eq. (3)] may appear

almost identical to CPMG, the spin dynamics however

retains an additional element of evolution. It is in-
structive to view the KCPMG pulse sequence in two

segments. The first segment includes the first p=2 pulse
and the following time period Tm. The second segment
starts at the end of Tm and extends to the rest of the

sequence. This second segment is identical to the CPMG

sequence since the magnetization starts in the transverse

plane. Our understanding of the CPMG sequence states

that at any time in the middle of the two adjacent p
pulses the average phase is zero and the effect of diffu-

sion is just an attenuation factor. This attenuation factor

can be obtained from a CPMG measurement with the

same Tcp.
The presence of the first segment produces a spatially

modulated magnetization, at time Tm, with a modulation
wavelength:

k ¼ 2p=ðcGdÞ; ð4Þ

where c is the gyromagnetic ratio of the detected nuclei,
G is the magnetic field gradient. One may also define a
wave vector

K � 2p=k ¼ cGd; ð5Þ
as in magnetic resonance imaging [23,24]. These K-
states of magnetization modulation, hence the name

‘‘KCPMG,’’ are the eigenstates of diffusion in bulk flu-

ids and the amplitude of the K-states decays exponen-
tially [3,25] with the decay rate:

RðKÞ ¼ DK2; ð6Þ
where D is the diffusion constant, defined from the mean

square displacement (hr2i), D ¼ hr2i=6D where D is the

observation time. In bulk fluids, D is a constant. For

diffusion in porous media, the above sinusoidal modu-

lation is no longer the eigenstate of the diffusion dy-

namics resulting in that D can depend on D.
Thus, the effect of the first part of KCPMG is to

prepare a spatially modulated magnetization state and

the second part monitors the evolution of this K-state.
The KCPMG echoes appearing off center should be

viewed as the time-domain signal of the K-states with
the time origin at the CPMG echo position. On the

other hand for the case of the CPMG, the initial state is

a spatially uniform magnetization. Thus, one would

expect that the signals from KCPMG sequence will have

an additional decay exp �RðKÞt½ 
:

SðK; tÞ � Sð0; tÞ � e�DK2t; ð7Þ
t is echo time, t ¼ 2NTcp and N is the echo number. The

signal Sð0; tÞ is in fact the CPMG data since it corre-

sponds to Tm ¼ 0 and thus K ¼ 0. In the later sections,

we will present experimental results confirming Eq. (7).

Detailed spin dynamics calculations including the effects

of finite pulse length and gross field inhomogeneity have

confirmed that Eq. (7) is a good ansatz. We will outline

the more detailed theory for KCPMG in Appendix A.

2.5. Correction for spin–spin relaxation

For samples with short relaxation times, a correction

term has to be added to Eq. (7). Since the KCPMG

echoes appear at different times than the CPMG echoes,

transverse relaxation affects KCPMG and CPMG dif-

ferently if relaxation is important during the time d. For
example, with Tm ¼ þd, the two N th echoes of the

KCPMG sequence appear at 2NTcp and 2NTcp þ 2d after
the initial p=2 pulse. Thus, a correction term to com-

pensate for such different echo times can be included in

Eq. (7):

SðK; tÞ � Sð0; tÞ � 1
4
ð2þ e�2d=T2 þ e2d=T2Þ � e�DK2t; ð8Þ

where T2 is the spin–spin relaxation of the fluid, in-

cluding surface contributions. We shall denote A for the
relaxation factor: A � 1

4
ð2þ e�2d=T2 þ e2d=T2Þ. For d � T2

as is the case for our experiments shown later, A can be
well approximated by 1.

2.6. Alternative KCPMG sequences

There are various means to create the initial spatial

modulation of the magnetization essential for the

KCPMG concept. In a second implementation a z-
magnetization modulation is created and refocused with

the following sequence

p
2
� d � p

2
� Td �

p
2
� Tcp � p

�
� 2Tcp

�
n
: ð9Þ

The phases used for the first three pulses are: (0� 180�),
(0� 0� 180�180�), and 0�. The phase of all p pulses is 90�.
The receiver phases are: 0� 180� 180� 0�. The first p=2
pulse rotates the magnetization to the transverse plane

for precession under the field gradient. The second p=2
pulse stores the magnetization modulation along the

longitudinal direction. The wave length of the modula-

tion is again given by Eq. (4). The transverse magneti-

zation at the end of the second p=2 pulse can be removed
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by proper phase cycling or inclusion of a crusher gra-
dient. The rest of the sequence is identical to the CPMG.

The first three pulses form the usual stimulated echo

sequence and Td is the initial diffusion time. The first

echo after the third p=2 pulse is a stimulated echo. For
the N th echo, the diffusion time is D ¼ Td þ 2NTcp.
More complex modulation scheme can be imple-

mented in the initial part of the sequence. For example,

if an initial modulation consists of a superposition of
uniform magnetization with a modulated magnetiza-

tion, then one scan of the KCPMG sequence can obtain

decays for multiple values of K.
In an example of such complex modulation, the

CPMG sequence is preceded by three pulses:

p
2
� d=2� h1 � d=2� h2 � Tcp � p

�
� 2Tcp

�
n
: ð10Þ

h1 and h2 are RF pulses with tipping angles h1 and h2.
The first two pulses create magnetization with a modu-
lation characterized by K ¼ �K0, �K0=2, and 0, where
K0 ¼ cGd. The tipping angle h2 of the third pulse as well
as the phase cycling for the first three pulses control the

weight of the different modulations. Five echoes will be

observed between the adjacent p pulses. Echoes for

different modulations are shifted by a different time,

�jKj=ðcGÞ, from the nominal CPMG echo position.

Thus in a single scan, three decays for jKj ¼ 0;K0=2;K0

can be obtained simultaneously.

3. Experimental verifications

3.1. Bulk fluids

The KCPMG technique was tested on a sample of
tap water using a Bruker Avance NMR spectrometer at

a proton Larmor frequency of 85MHz. The pulse se-

quence in Eq. (9) was used with an additional crusher

gradient during Td to remove the transverse compo-

nents. A z-gradient of 10G/cm was applied during the

encoding and CPMG. A y-gradient of 5 G/cm was used

during the crusher period (Td ). Tcp was 2 ms and Tm
varied from 0.5 to 1.9 ms. In Fig. 2, the decay for all
values of Tm is approximately exponential and the decay
rate increases as Tm increases. The initial KCPMG sig-

nals are about half of the CPMG signal because only

one KCPMG echo was detected. The signals of early

echoes showed additional oscillations due to the evolu-

tion in the echo shape. The decay rate for each value of

Tm was calculated from the data and plotted in the inset

of Fig. 2 as a function of T 2m. The linearity and values of
the additional decay rate is consistent with Eq. (6) for

the decay of K-modes. Therefore, these data are con-
sistent with Eq. (7).

Similar experiments were performed on an oil sample

which is often used as a viscosity standard (S6, Cannon

Instrument Company, P.O. Box 16, State College, PA).

The CPMG and KCPMG data presented in Fig. 3 show

a small additional decay in KCPMG compared to

CPMG, in contrast to the much larger additional decay

observed for water in Fig. 2. This is an indication of the

much smaller diffusion constant of S6 oil, consistent

Fig. 2. KCPMG measurements for water at several Tms. The CPMG
data corresponds to Tm ¼ 0. The pulse sequence used was Eq. (9),

Tcp ¼ 2ms and Td ¼ 5:3ms. The magnetic field gradient applied during

the encoding and CPMG is 10G/cm along z. A crusher gradient of 5G/

cm (y) was applied during Td . Signals were acquired at the peak of the
early echoes. Inset: Decay rate R for KCPMG as a function of T 2m. The
linear dependence of R with T 2m is consistent with Eq. (6) and the ex-
tracted diffusion constant for water is 1:5� 10�5 cm2/s at 14 �C. The
apparent glitches in the data were caused by intermittent receiver

problems.

Fig. 3. Comparison of KCPMGmeasurement for S6 oil at Tm of 1.9 ms
with CPMG data. In both cases, Tcp ¼ 2 ms and the magnetic field

gradient used was 10G/cm. From the extra decay of the KCPMG data

compared to the CPMG, the diffusion constant of the S6 oil was de-

termined to be 0:82� 10�6 cm2/s at 14�C. The apparent glitches in the
KCPMG data around 0.4 s were caused by receiver problems. The

experiments were performed on a Bruker Avance spectrometer at

85MHz. The KCPMG echo signal is detected at the early echo and the

amplitude is scaled up by factor of 2 in order to facilitate comparison

with CPMG data in the figure.
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with independent measurements using the pulsed field
gradient method [26].

3.2. Restricted diffusion

It is well-known that diffusion in porous media is re-

stricted in the sense that the mean square displacement of

molecules is less than that for the bulk fluid [1,27]. It is

often expressed as a reduced diffusion constant that
is dependent on the diffusion time. For example, Mitra

et al. [2] showed that such time-dependent diffusion con-

stant can be used as a measure of the surface-to-volume

ratio of materials. In addition, at long time when the

molecular diffusion distance exceeds the characteristic

length scale, such as the pore size, the diffusion constant

reaches an asymptotic value that is a function of the

connectivity of the pore system,Dð1Þ ¼ D0=F/, where/
is the porosity of the sample. F is the formation factor, an
important characteristic of porous materials.

Here, we utilize the effect of restricted diffusion and

the resulting time dependent displacement as a stringent

experimental test of the concept of KCPMG. In par-

ticular, we will show that the diffusion time in a

KCPMG experiment is the time between the initial

modulation and the detection of the N th echo, i.e.,
D � 2NTcp.
For bulk fluids, since D is a constant independent of

D, it is difficult to prove that our measurements pre-

sented in the previous section are a measure of the true

long-time displacements. In addition, while our analyt-

ical theory of the KCPMG sequence can be used to

calculate in detail the effects of bulk diffusion, it is dif-

ficult to evaluate in detail the effects of restricted diffu-
sion. Each coherence pathway will have to be

individually analyzed for restricted diffusion as it was

reported for the direct echo pathway [8].

3.3. Brine saturated rocks

The KCPMG experiments on rocks were performed

at low magnetic field of about 410G in order to reduce
the effects of internal field inhomogeneity due to sus-

ceptibility contrast. The NMR spectrometer operated at

a Larmor frequency of 1.7MHz. Rock samples were

cylinders of 20mm diameter and 38mm length. The

samples were placed in the fringe field of a supercon-

ducting magnet where the constant field gradient applied

across the sample was 13.2G/cm. The samples were

saturated with brine similar to the borehole salinity. The
p=2 and p pulses are 12 and 24 ls long, respectively,
exciting an approximately 5mm slice of the sample

perpendicular to the direction of the field gradient.

Fig. 4a shows the data of KCPMG and CPMG on a

sample of brine saturated Berea sandstone. The decays

are approximately exponential, although there is a slight

curvature at short times. This is consistent with a rela-

tively narrow distribution of pore sizes in this type of
rock. The mean square displacement of water due to

diffusion versus time, obtained by log SðK; tÞ=½
Sð0; tÞA
=K2, is shown in Fig. 4b and compared with that

of bulk water. It is clear that the displacement in the

rock is reduced compared to that in bulk water, a result

consistent with the concept of restricted diffusion. The

line in the figure is a fit to the short time data of Berea. It

highlights the deviations of the Berea data at long time,
indicating that the diffusion is being further slowed

down at later times and that the diffusion cannot be

described by a time-independent diffusion coefficient.

Fig. 5 shows the time-dependent diffusion constant ob-

tained from the KCPMG data as a function of time.

Since DðtÞ is expected to change with time only

smoothly, each point in Fig. 5 represents an average of

five original data points. The reduction of DðtÞ at long
time is clear. In addition, DðtÞ by KCPMG is in

Fig. 4. (a) KCPMG measurements for the Berea sample with

Tm ¼ 0:9ms, compared with the CPMG data. Tcp ¼ 1:1 ms. The

magnetic field gradient is 13.2G/cm. (b) A plot of the mean square

displacement extracted from the KCPMG and CPMG measurements

for water in the Berea sample (crosses) versus time. The data for bulk

water (circles) were obtained under identical condition and are shown

as a comparison. Clearly, the displacement of water in the Berea

sample is reduced compared to that in bulk. The line is a fit to the

displacement for Berea at early times showing that diffusion at long

time is further reduced.
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complete agreement with the data obtained with stim-

ulated echo experiments in a constant gradient [5].
At long diffusion time t when the molecules have

diffused a distance larger than the pore spacing, DðtÞ
approaches a constant, Dð1Þ ¼ D0=F/. For samples
with large pores, such as Berea sandstone, this limit can

be reached only at long time and is difficult to measure

directly due to short spin relaxation time. For example,

it takes 2 s for water to diffuse 100 lm, which is much
longer than the T1 or T2 relaxation times in Berea.
However, in fine grained rocks such as mudstones, this

limit can be reached within a time shorter than the re-

laxation time [28]. Fig. 6 shows an example where the

long time limit is observed. The sample is a carbonate

rock with pore sizes on the length scale of a few microns.

The two data sets shown in Fig. 6 agree for times larger

than 50ms and DðtÞ saturates at about 0:7� 10�5 cm2/s,

consistent with the long time limit.

4. Presence of grossly inhomogeneous fields

The experimental results shown in the sections above

have demonstrated that Eq. (7) is a good ansatz for our

measurements and that it allows the extraction of the

diffusion coefficient at multiple diffusion times in a single

scan.

In grossly inhomogeneous fields, the KCPMG signal
contains contributions from many different coherence

pathways. It would be natural to expect that contribu-

tions from some of the coherence pathways do not fol-

low the simple relationship of Eq. (7). In fact, Eq. (7) is

only a valid approximation for some of the coherence

pathways. For example, let us consider the ninth echo,

i.e., N ¼ 9, and one such coherence pathway is

Q ¼ ðþ þ þþþ�����Þ. This is equivalent to a
spin-echo with a an effective pulse spacing between the

p=2 and p pulse of 9Tcp. Thus, this coherence pathway
contributes to the KCPMG signal (summing contribu-

tions from positive and negative values of Tm) as

SQ ¼ e�ð2=3ÞDðcGÞ2ð9TcpþdÞ3 þ e�ð2=3ÞDðcGÞ2ð9Tcp�dÞ3

¼ 2e�ð2=3ÞDðcGÞ2ð9TcpÞ3e�DK218Tcp

� cosh 2K2D½ð9TcpÞ2=d
n

þ d=3

o
: ð11Þ

The cosh factor for the above pathways may not be

approximated by 1 and the contribution from this

pathway can deviate from our ansatz in Eq. (7). How-

ever, coherence pathways such as Q ¼ ðþ þ þþþ
�����Þ do not contribute much to the CPMG and
KCPMG echoes, because with our pulse sequences, they

are only ineffectively excited and they do not have large

degeneracies. A detailed analysis of CPMG coherence

pathways and their classification [11] has shown that the

main contribution to the CPMG signals comes from two

Fig. 6. The time-dependent diffusion constant DðDÞ for water saturated
carbonate rock obtained from the KCPMG and CPMG data as a

function of echo time (open circles). For KCPMG, the diffusion time D
is 2NTcp. Each data point represents the average of five original data
points at nearby echo times. The noise is quite significant for echo time

longer than 0.3 s. DðDÞ obtained using stimulated echo technique on
the same sample is shown as the black circles. The observed saturation

of DðDÞ is consistent with the long time limit obtained independently
from the measured formation factor and porosity.

Fig. 5. The time-dependent diffusion constant DðDÞ for: (a) the bulk
water sample and (b) the Berea sample obtained from the KCPMG

and CPMG data as a function of echo time. For KCPMG, the diffu-

sion time D is 2NTcp. In (b), the filled circles show DðDÞ obtained using
conventional stimulated echo technique on the same sample. The re-

sults are consistent with the KCPMG results. The line is obtained by

Eq. (7) using the multi-exponential fits to the KCPMG and CPMG

decay data. The corresponding measurement on bulk water is shown as

the dotted line for comparison. The gradual reduction of DðDÞ at long
time is clear.
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classes of coherences, the direct echo and the so-called
singly stimulated echoes. The term singly stimulated

echo refers to those pathways with no consecutive + or

) present. For these pathways, the spatial modulation of
the phase is always characterized by wave vectors with a

magnitude less than cGTcp. The basic segment of the
singly stimulated coherence pathway is

� 0 � � � 0|fflffl{zfflffl}
s1

þ and þ 0 � � � 0|fflffl{zfflffl}
s1

�; ð12Þ

where s1 is the number of q ¼ 0 in such segments. The

direct echo can be seen as the special case with s1 ¼ 0.
Contributions from these two classes account for about

95% of the CPMG signal. Furthermore, the average

length of such segments has been found to be very short

for CPMG, s1K 2. These results illustrate a funda-

mental characteristic of the coherence pathways in

CPMG and related sequences, that the basic segments

are the direct spin echo segments, þ�, and short singly
stimulated segments with s1 being around 2. The CPMG
signals should be attributed primarily to the pathways

formed by these short segments as the repeating units.

Let us consider a singly stimulated segment,

þ0 � � � 0� with s1 zeros. Using the Hahn�s formula for
stimulated echo attenuation [29], we calculate the decay

component (summing both positive and negative Tm)

SQ ¼ e�DðcGÞ2ðTcp�dÞ2ð2Tcp�2dþ6s1TcpÞ=3

þ e�DðcGÞ2ðTcpþdÞ2ð2Tcpþ2dþ6s1TcpÞ=3

¼ 2e�DðcGÞ2ð2=3þ2s1ÞT 3cp � e�DK2ð2þ2s1ÞTcp

� cosh DðcGÞ2ðð2



þ 4s1ÞT 2cpd þ 2d3=3Þ
�
: ð13Þ

The first term, exp½�DðcGÞ2ð2=3þ 2s1ÞT 3cp
, is the same
for the CPMG contribution. The second term

exp½�DK2ð2þ 2s1ÞTcp
 is the KCPMG factor. When s1 is
small and DðcGÞ2T 3cp is small, the cosh term approxi-
mates 1 to second order and thus this contribution is

consistent with Eq. (7).

4.1. KCPMG to monitor other processes

We have shown that KCPMG is capable of moni-

toring molecular displacement as a function of echo

time. It is natural to extend it to monitor coherent
movement of molecules, such as in a flowing fluid. In

particular, since this experiment measures displacement

as a function of time, it should be able to obtain velocity

and acceleration in a non-stationary flow.

In general, KCPMG is capable of monitoring evo-

lution of magnetization and it may be useful to study

other processes, for example, magnetization transfer via

chemical exchange. This process is commonly measured
by first perturbing the spin system out of equilibrium

and then monitoring its evolution as a function of time,

D. Usually, experiments have to be repeated for different

D in order to characterize the dynamics over a range of
time scales. Using KCPMG (in this case without field

gradient), the entire D-dependence can be obtained in
one or a few scans. For example, consider a two-proton

system with a difference in resonant frequency f due to
chemical shifts. Let Tm ¼ �1=2f , then the spins of the
two protons will point to the opposite directions at the

beginning of the CPMG portion of KCPMG [Eq. (3)].

Then, KCPMG echoes will reflect the evolution of the
initial state with two opposite-pointing spins. The rela-

tive short acquisition window (2Tcp) will limit the spec-
tral resolution.

4.2. Limitations

KCPMG echoes are only formed when

jTmj < Tcp: ð14Þ
This limits the amount of phase encoding that can be

achieved by the choice of the echo spacing in the CPMG

sequence. This puts a restriction on the range of diffu-
sion constant that can be measured using this technique

for a given field gradient. If Tcp is increased too much,
the total number of observable echoes becomes too

small for signal-to-noise consideration. With a field

gradient of 10G/cm, it is difficult to measure diffusion

constants much lower than 10�6 cm2/s. Higher field

gradients will be helpful to reduce Tcp and Tm and expand
the detectable range of diffusion constants.
The uncertainties in the extracted value of the time-

dependent diffusion coefficient from KCPMG depends

on time. At early time, the diffusion effect is small,

possibly resulting in large errors. At very long times, the

relative attenuation is large, but the overall amplitudes

are very small. This may lead again to large errors.

5. Conclusions

This paper presents a novel concept to extend the

CPMG sequence to detect molecular displacement at

many time points in one scan of the sequence. The es-

sence of our modification to the CPMG sequence is to

modulate the initial magnetization and then to observe

the evolution of such modulation with the CPMG p
pulse train. Despite the complexity of the coherence

pathways in CPMG and KCPMG, we provide an in-

tuitive understanding of the sequence. This new method

enables a rapid measurement of diffusion in bulk fluids

and most importantly in porous media where the diffu-

sion process is restricted by the pore geometry. This

method might be particularly useful for applications of

hyperpolarized gases, such as xenon and helium, or
other non-equilibrium magnetization sources where it is

difficult to maintain a sufficiently stable supply for

multiple experiments. Using the KCPMG concept, only
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a few scans will be needed to obtain results for many
diffusion times.
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Appendix A. Theory

This section presents the theory of KCPMG for bulk

diffusion by analyzing the contributing coherence path-

ways similar to those described for CPMG previously

[11,21]. We will first review the coherence pathways for

CPMG before investigating the coherence pathways for

KCPMG. The theory is presented specifically for the

pulse sequence in Eq. (3).

A.1. Coherence pathways for CPMG

We follow the notations used in [21] in defining three

states of spin magnetization of an ensemble of spin-1=2
nuclei, M0, M�, and Mþ:

M0 ¼ Mz;

Mþ ¼ Mx þ iMy ;

M� ¼ Mx � iMy :

ðA:1Þ

These states are marked by q which can be 0, +1, and
)1, (or 0, þ, and �) respectively. The RF pulses rotate

the magnetization vector and thus change q,

MðtpÞ ¼ R �Mð0Þ: ðA:2Þ
Here, Mð0Þ and MðtpÞ are the magnetization vectors

before and after the pulse and the pulse duration is tp. R
depends on the Larmor frequency offset from the RF

frequency xRF, Dx0 � cjB0j � xRF, x1, and tp. Then, the
nutation frequency is X �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ Dx2

0

p
where

x1 ¼ cB1=2, and the tipping angle is Xtp. The matrix
elements, Rl;m, are given in [21] and repeated here

Rþ;þ ¼ R�
�;�

¼ 1

2

x1

X


 �(
þ 1

"
þ Dx0

X

� �2#
cosðXtpÞ

)

þ i
Dx0

X

� �
sinðXtpÞ; ðA:3Þ

R0;0 ¼
Dx0

X

� �2
þ x1

X


 �2
cosðXtpÞ; ðA:4Þ

Rþ;0 ¼ R�
�;0

¼ x1

X
Dx0

X
½1

�
� cosðXtpÞ
 � i sinðXtpÞ

�
eþi/; ðA:5Þ

R0;þ ¼ R�
0;�

¼ x1

X
Dx0

X
½1

�
� cosðXtpÞ
 � i sinðXtpÞ

�
e�i/; ðA:6Þ

Rþ;� ¼ R�
�;þ ¼ 1

2

x1

X


 �2
½1� cosðXtpÞ
eþi2/: ðA:7Þ

In this paper, the rotations for the p=2 and p pulses are
labelled as Lq;q0 and Kq;q0 , respectively.

A coherence pathway is characterized by a series of

numbers, QN � ðq0; q1; . . . ; qN Þ, where q0 is the magne-
tization state before the first p pulse and N is the echo

number. Ref. [11] has presented a classification of the
major coherence pathways showing the importance of

two classes of coherences, the direct spin echo (SE) and

the stimulated echo (STE).

In the absence of spin relaxation, the N th echo signal
is obtained from a sum over all coherence pathways

(MðNÞ ¼
P

QN
MQN ) where each term can be written as a

product of two factors

MQN ¼ AQ � SQ

¼ L0;q0
YN
l¼1

Kql;ql�1

 !
exp i

XN
l¼0

ql/l

 !* +
: ðA:8Þ

Here, Lqq0 and Kqq0 are matrix elements of the p=2 and p
pulses and AQ is identical for KCPMG and CPMG for

the same coherence pathway. Also, AQ depends on the
frequency offset and the RF power. /l is the random

phase factor due to diffusion between pulse l and lþ 1

in the presence of magnetic field gradients. The angle

brackets h� � �i represent an ensemble average of the

random phase factors, /0;/1;/2; . . . ;/N . SQ does not

depend on frequency offset. For unrestricted diffusion,

this contribution can be written as [21,30]

SQ ¼ exp

�
� 2

3
gQN

c2G2DT 3cpN
�
; ðA:9Þ

where gQN
is the enhancement of the decay rate for QN

compared to that of the direct echo pathway. Also, G is

the applied field gradient, D is the bulk diffusion con-

stant, and Tcp the half of the time between adjacent p
pulses.

A.2. Analytical results for early KCPMG echoes

For the echoes after the first and second p pulses, the
coherences are limited to Hahn echoes and stimulated

echoes. The diffusion effects for them have been calcu-

lated by Hahn [29].

Echoes after first p pulse

Only contribution from direct echo coherence,
CPMG:

S1 ¼ e�ð2=3ÞDðcGÞ2T 3cp : ðA:10Þ
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KCPMG (adding the signals for Tm > 0 and Tm < 0):

S1 ¼ e�ð2=3ÞDðcGÞ2ðTmþTcpÞ3 þ e�ð2=3ÞDðcGÞ2ðTm�TcpÞ3

¼ e�ð2=3Þa�2DðcGÞ2T 2mTcp � e�DðcGÞ2ðT 2cpTm�T 3m=3Þ
h

þ eDðcGÞ
2ðT 2cpTmþT 3m=3Þ

i
ðA:11Þ

� e�ð2=3Þa�2DK2Tcp 2
�

þOða2Þ
�
: ðA:12Þ

where K ¼ cGTm, a ¼ DðcGÞ2T 3cp and we assume a � 1.

Oða2Þ denotes a term second order in a.
The coherence pathways in CPMG and KCPMG for

these echoes are identical, thus the matrix elements (AQ)

determining the weight of these pathways are the same

[21]. Hence, the ratio of the KCPMG data and the

CPMG data is approximately exp½�K2D � 2Tcp
.
Echoes after the second p pulse

CPMG:

SE : e�ð4=3Þa; ðA:13Þ

STE : e�ð8=3Þa: ðA:14Þ
KCPMG: Tm < 0:

SE : e�ð2=3ÞDðcGÞ2ðTcp�TmÞ3e�ð2=3ÞDðcGÞ2ðTcpþTmÞ3

¼ e�ð4=3Þa�DðcGTmÞ24Tcp ; ðA:15Þ

STE : e�DðcGÞ2ðTcp�TmÞ2ð8Tcp�2TmÞ=3: ðA:16Þ
KCPMG: Tm > 0:

SE : e�ð2=3ÞDðcGÞ2ðTcpþTmÞ3e�ð2=3ÞDðcGÞ2ðTcp�TmÞ3

¼ e�ð4=3Þa�DðcGTmÞ24Tcp ðA:17Þ

STE : e�DðcGÞ2ðTcpþTmÞ2ð8Tcpþ2TmÞ=3: ðA:18Þ
Combining signals from positive and negative Tm,

SE : 2e�ð4=3Þa�DK24Tcp ; ðA:19Þ

STE : e�ð8=3Þa�DK24Tcp 2
�

þOða2Þ
�
: ðA:20Þ

The frequency spectra of these coherence pathways are

determined by the matrix elements (AQ) and have been

shown in [21]. The amplitudes of the two coherence

pathways depend on the RF pulses and the frequency

filtering in detection. Let ASE and ASTE denote these

amplitudes, thus we can express the KCPMG signal as

M2 � 2ASEe�ð4=3Þa�DK24Tcp þ 2ASTEe�ð8=3Þa�DK24Tcp

¼ e�DK24Tcp � 2ASEe�ð4=3Þa�
þ 2ASTEe�ð4=3Þa�: ðA:21Þ

The factor between the square brackets is precisely the

signal for the second CPMG echo.

A.3. KCPMG echoes after many p pulses

For the KCPMG sequence, for example, Eq. (3), the

contribution from a coherence pathway Q is a product
of two factors,

MQN ¼ AQ � SK
Q : ðA:22Þ

AQ is the product of the matrix elements associated with

the RF pulses and is identical to the corresponding term

for CPMG. The factor SK
Q is the diffusion decay factor

that include the initial magnetization modulation

expð�iDx0jTmjÞ. The SK
Q factor is in general different

from the corresponding term for CPMG.

In order to understand SKQ , it is useful to introduce for
each coherence pathway the instantaneous wavevector

kðtÞ in analogy to the approach in magnetic resonance
imaging:

kðtÞ ¼ cG
Z t

0

qðt0Þdt0; ðA:23Þ

where qðt0Þ is the instantaneous value of q that is

piecewise constant between pulses. The diffusive atten-
uation for a given coherence pathway and unrestricted

diffusion can then generally be written as [3]

SK
Q ¼ exp

�
� D

Z T

0

kðtÞ2 dt
�
; ðA:24Þ

where time t ¼ 0 is defined at the beginning of the se-

quence Eq. (3) and T is the echo time. The inclusion of

Tm in the initial pulse spacing of the KCPMG sequence
leads to a shift of the instantaneous wavevector of K
relative to that in the CPMG sequence. We use kðtÞ to
denote the instantaneous wavevector for the CPMG

sequence. Up to corrections of order expðDc2G2d3Þ, the
diffusive attenuation can be written as:

SK
QðK; tÞ � exp

�
� D

Z Tmþ2NTcp

Tm

½kðtÞ þ K
2 dt
�

¼ SQð2NTcpÞ � exp
 
� DK2 � 2NTcp

!
� exp

�
� 2DK

Z 2NTcp

Tm

kðtÞdt
�
: ðA:25Þ

The integral limits Tm and Tm þ 2NTcp correspond to the
beginning and the echo position of the CPMG sequence.

This factorization thus facilitates comparison with the

CPMG sequence, for instance, SQð2NTcpÞ is the decay
factor for CPMG. This expression shows that for sym-

metrical coherence pathways such as the direct echo,R t
0
kðtÞdt ¼ 0 and the last term can be replaced by 1. In

this case, our ansatz for the KCPMG sequence is re-

covered. However, for a general coherence pathway, the

last term is not exactly 1 and the ansatz becomes an

approximation. The key question is whether the signal is

dominated by contributions from coherence pathways
where the correction term is small or not. Our experi-

mental results indicate that the ansatz is indeed a good

approximation. We find further support in numerical

calculations, where we calculated the weight and diffu-

sive attenuation for all coherence pathways that con-

tribute signal up to the 15th echoes. Similar to our
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treatment of CPMG echoes, we parametrize the diffu-

sion factor SK
Q as

SK
Q ¼ exp

�
� 2

3
gQN

c2G2DT 3cpN
�
: ðA:26Þ

The numerical results are summarized below.
Fig. 7 shows the diffusion decay factor g for the co-

herence pathways of the 15th echo, summing the con-

tribution from positive and negative Tm. As jTmj=Tcp
increases, the diffusion rate for the major coherence

pathways increases and the increase is approximately

proportional to K2, consistent with Eq. (7). We have

further calculated the KCPMG echoes by summing all

coherence pathways, then obtained the signal intensity
using a filter that is of the shape of asymptotic CPMG

echo shifted to the corresponding KCPMG echo posi-
tions. These echo amplitudes are used to calculate DðtÞ
by Eq. (7), and the results are shown in Fig. 8.
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